Identification and estimation of state variables on reduced model using balanced truncation method

نویسنده

  • Erna Apriliani
چکیده

In this paper, we study the identification of variables on a model reduction process and estimation of variables on reduced system. We aim to relate variables on reduced and original system, so that we can compare the estimation accuracy of the original system and reduced system. As such, the objective of this paper is to discuss identification and estimation of variables on reduced model. First, model order reduction is done by using balanced truncation method. This process begins with the construction of balanced system. After that, we identify the relationship between variables of the balanced system and the original system. Then, we eliminate variables of the balanced system that have a small influence on the system. Furthermore, we estimate state variables on the original system and reduced system using a Kalman Filter algorithm. Finally, we compare the estimation result of the identified reduced and original system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Optimal State Estimation

Minimizing forecast error requires accurately specifying the initial state from which the forecast is made by optimally using available observing resources to obtain the most accurate possible analysis. The Kalman filter accomplishes this for linear systems and experience shows that the extended Kalman filter also performs well in nonlinear systems. Unfortunately, the Kalman filter and the exte...

متن کامل

Biochemical network models simplified by balanced truncation.

Modelling of biochemical systems usually focuses on certain pathways, while the concentrations of so-called external metabolites are considered fixed. This approximation ignores feedback loops mediated by the environment, that is, via external metabolites and reactions. To achieve a more realistic, dynamic description that is still numerically efficient, we propose a new methodology: the basic ...

متن کامل

Multi-Area State Estimation Based on PMU Measurements in Distribution Networks

State estimation in the energy management center of active distribution networks has attracted many attentions. Considering an increase in complexity and real-time management of active distribution networks and knowing the network information at each time instant are necessary. This article presents a two-step multi-area state estimation method in balanced active distribution networks. The prop...

متن کامل

Balanced truncation for linear interconnected systems: the state feedback case

Model order reduction is an important tool in control systems theory. In particular, it is useful for controller design since the dimension of the controller becomes very high when we use advanced control theory. Balanced truncation is one of the most useful model order reduction methods. In general, however, the stability of the feedback system is not maintained when the order of the controlle...

متن کامل

Proper Orthogonal Decomposition for Linear-Quadratic Optimal Control

Optimal control problems for partial differential equation are often hard to tackle numerically because their discretization leads to very large scale optimization problems. Therefore, different techniques of model reduction were developed to approximate these problems by smaller ones that are tractable with less effort. Balanced truncation [2, 66, 81] is one well studied model reduction techni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017